

Shahzaib Ahmed

403-597-2257 | shahzaib@ualberta.ca | linkedin.com/in/shahzaib-ahmed | github.com/Shozy3

PUBLICATIONS

Suarez Suarez, R.G., Parsaee, A., **Ahmed, S.**, Huynh, H.Q., Shaikh, A., Otley, A., Jacobson, K., Sherlock, M., Mack, D.R., Deslandres, C., El-Matary, W., Crowley, E., deBruyn, J., Walters, T., Griffiths, A.M., Greiner, R., Wine, E., The Canadian Children IBD Network. *Machine Learning Predicts First Bowel Resection in Pediatric Crohn Disease Patients.* (in preparation)

EXPERIENCE

Machine Learning Research Assistant — Transportation Engineering <i>SMART Mapping Lab, Civil & Environmental Engineering, UAlberta</i>	May 2025 – Present Edmonton, AB
<ul style="list-style-type: none">Developed and deployed LiDAR semantic segmentation pipeline using Point Transformer v2, achieving 78.3% mean IoU across 11 highway infrastructure classes; analyzed feature attribution with XAI methods (Integrated Gradients, Grad-CAM).Designed sensor fusion pipeline integrating YOLOv8 vehicle detection, ByteTrack multi-object tracking, and GPS/IMU data for mobile curbside surveys.Automated acquisition and structured parsing of 400+ North American traffic accident reports, generating statistical summaries on crash types, contributing factors, and injury severity distributions.Performed intersection crash data analysis to assess policy impact of speed enforcement cessation in Edmonton, identifying statistically insignificant variance in post-policy speed behavior.Reviewed Graph Neural Network models (GraphWaveNet, DCRNN) for spatio-temporal traffic forecasting and documented scalability trade-offs for urban transport datasets.	
Applied Machine Learning Researcher <i>Faculty of Medicine & Dentistry, UAlberta</i>	May 2024 – May 2025 Edmonton, AB
<ul style="list-style-type: none">Processed 58K+ clinical data points from 934 pediatric Crohn's patients using mRMR feature selection (80% dimensionality reduction).Developed survival models (Random Survival Forest, Cox PH) achieving 96% C-index; optimized with multithreaded training (40% faster).Co-authored publication: <i>Machine Learning Predicts First Bowel Resection in Pediatric Crohn Disease Patients.</i>	
Software Development Intern <i>Government of Alberta, Environment & Parks</i>	Jan 2024 – Oct 2024 Edmonton, AB
<ul style="list-style-type: none">Re-architected Python data pipeline with concurrency and profiling, achieving 5.5× speedup.Deployed \$6K NAS infrastructure replacing cloud storage, saving \$94K annually.Integrated geospatial workflows using ArcGIS Pro with automated validation across heterogeneous data sources.	
Computer Vision Research Assistant <i>Department of Civil & Environmental Engineering, UAlberta</i>	Feb 2023 – Sept 2023 Edmonton, AB
<ul style="list-style-type: none">Migrated tracking system from SORT to DeepSORT, improving vehicle identity persistence and tracking reliability.Built wildfire visualization web app with automated satellite imagery pipeline; ported 400+ lines of MATLAB to Python.	

TECHNICAL SKILLS

Languages: Python, C++, Java, JavaScript, SQL, MATLAB

ML/DL Frameworks: PyTorch, TensorFlow, scikit-learn, YOLO, DeepSORT, Point Transformer v2

Tools & Infrastructure: FastAPI, Flask, Git, Linux, Docker, Qt, CMake, OpenCV, ArcGIS, SQLite

Coursework: Data Structures, Algorithms, Operating Systems, Databases, Machine Learning

PROJECTS

Primrose – Personal Reading Management System <i>C++17, Qt 6, SQLite, CMake</i>	2025
<ul style="list-style-type: none">Developed cross-platform reading analytics app using MVC architecture and modern C++ design patterns (Factory, Observer, Strategy).Designed SQLite schema with relational integrity, transaction-safe CRUD, and session analytics integration.Implemented adaptive reading-speed estimator and time-prediction model using session difficulty and genre weighting.	
Explainable AI Diagnostic Framework <i>PyTorch, FastAPI, XAI Methods</i>	2025
<ul style="list-style-type: none">Built open-source diagnostic system integrating Integrated Gradients, Grad-CAM, and LRP for model interpretability.Implemented unified adapter supporting image and point-cloud models; generated interactive dashboards and PDF reports.Project extended in collaboration with SMART Mapping Lab; anticipated authorship acknowledgment.	

EDUCATION

University of Alberta <i>Bachelor of Science in Computer Software Engineering, Minor in Mathematics</i>	Edmonton, AB Sept 2020 – Apr 2026 (expected)
---	---